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ABSTRACT

RELATIVE CONSISTENCY OF PROJECTIVE RECONSTRUCTIONS

OBTAINED FROM AN IMAGE PAIR

M.Sc., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Volkan Atalay

June 2011, 49 pages

This thesis works on the projective reconstruction of an object or a scene from

an image pair and their relative consistency. In this study 3D points are esti-

mated from image pairs using projective geometry and epipolar geometry. Two

measures are presented for verification of projective reconstructions with each

other. These measures are based on the equality of ratio between the x, y and z

coordinates of two 3D reconstructed points obtained from the same correspond-

ing points. This information is used for measuring the relative consistency of

projective reconstructions obtained from the same image pair.

Keywords: Projective reconstruction, epipolar geometry, relative consistency
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ÖZ

GÖRÜNTÜ ÇİFTİNDEN ELDE EDİLEN PROJEKTİF GERİÇATIMLARIN

BAĞIL DOĞRULUĞU

Otlu, Burçak

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Assoc. Prof. Dr. Volkan Atalay

Haziran 2011, 49 sayfa

Bu tez bir nesne veya manzara görüntü çiftinin projektif geriçatımı ve bunların

bağıl doğruluğu üzerinedir. Bu çalışmada projektif geometri ve epipolar ge-

ometri kullanılarak bir görüntü çiftinden üç boyutlu noktalar bulunmuştur. Pro-

jektif geriçatımları birbiriyle doğrulamak için iki ölçüm yöntemi sunulmuştur.

Bu ölçümler aynı karşılık gelen noktalardan elde edilen iki tane üç boyutlu

geriçatılmış noktanın x, y ve z koordinatlarının oranının eşitliğine dayanmak-

tadır. Bu bilgi aynı görüntü çiftinden elde edilen projektif geriçatımların bağıl

doğruluklarını ölçmek için kullanılmıştır.

Anahtar Kelimeler: Projektif geriçatımı, epipolar geometri, bağıl doğruluk
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CHAPTER 1

Introduction

There has been a considerable progress on 3D reconstructions of an object or

a scene from its image sequence. It is a well-known fact that when the in-

trinsic parameters, extrinsic parameters or metric information about the object

is unknown, only projective reconstruction is possible from an image pair [4].

Therefore, in general to obtain affine, metric or euclidean reconstruction addi-

tional information about the intrinsic parameters, extrinsic parameters or object

is needed. Constraints on the parameters such as constant or known parameters

and constriants on the number of images are used to upgrade the reconstructions

[18, 19, 22, 23]. In this thesis, since camera calibration, which is often erroneous,

is not known, thus projective reconstruction from an image pair is achieved.

Camera is undergoing an unknown motion around an object or a scene. Given

an image pair, interest points are computed by Canny edge detector [9] and then

these points are matched by the constraint on their normalized-cross-correlation

scores and constraint of disparity [10]. More information about matching can

be found in [20, 21]. From the uncalibrated image pair, equivalent epipolar ge-

ometry is obtained, which is represented by the fundamental matrix, F . There

are various techniques for estimating the fundamental matrix, F . Commonly

used robust methods are M-Estimators, LMedS (Least Median of Squares) and

RANSAC (RANdom SAmple Consensus) [17]. These are detailed in [16, 10, 11].
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However, in this study, because of its easy implementation, Normalized 8-point

algorithm is used [14], which is linear and SVD (Singular Value Decomposition)

is used as a main tool. Camera matrices are computed by weak calibration

and using these matrices, projective reconstructions are computed [11, 12, 13].

Therefore two or more 3D data sets are obtained from the same image pair. It

has been observed that 3D reconstructed points from the same corresponding

points, the ratio between the x, y and z coordinates of the 3D points are the

same. This fact is used for measuring the relative consistency of two projective

reconstructions. Moreover, in computer vision literature, it seems that no such

work describing these measures are presented. In chapter 2 projective geometry

is introduced. Camera models and epipolar geometry are reviewed in Chap-

ter 3. Steps of the projective reconstruction, implementation details and theory

behind new measures with the experimental results are explained in Chapter 4.

Finally in Chapter 5 conclusion and significant issues arising from this thesis are

mentioned.
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CHAPTER 2

Projective Geometry

Perspective projection is the idealized mathematical model of real cameras.

Therefore necessary terminology and notation are described in this chapter.

2.1 The Projective Geometry of 2-space

The projective plane is the projective space P 2 which may be also considered as

vector space. There is no difference between the representations of points and

lines in projective plane.

2.1.1 Points and Lines

A point x=[x, y] in R2 is represented as a 3-vector (3 element vector) x=[x, y, 1]

by adding 1 as the last element. Therefore homogeneous representation of any

point x=(x1, x2, x3)
⊤ represents the point (x1/x3, x2/x3)

⊤ in R2. A line in the

plane with the equation ax+by+c=0 is represented by a 3-vector [a, b, c]⊤. A

point x = [x, y]⊤ lies on the line l = [a, b, c]⊤ if and only if ax+by+c=0. This

may be written as the inner product of vectors [x y 1][a b c]⊤; as a result, the

point x lies on the line l if and only if x⊤l = l⊤x = x · l = 0. Intersection of two

lines l and l
′

is the point x=l×l
′

, where × represents vector or cross product.

Line through two points x and x
′

is l=x×x
′

.

3



2.1.2 Ideal points and the line at infiniy, l∞

Consider two parallel lines ax+by+c=0 and ax+by+c
′

=0, which are represented

by vectors l = [a, b, c]⊤ and l
′

= [a, b, c
′

]⊤. The intersection of parallel lines is

l × l
′

= [b,−a, 0]⊤. Inhomogeneous representation of this point, [b/0,−a/0]⊤,

which doesn’t make sense. In general, points with homogeneous coordinates

[x, y, 0]⊤ do not correspond to any finite point in R2. Therefore, we can say that

parallel lines meet at infinity [2].

Homogeneous vectors x = [x1, x2, x3]
⊤ such that x3 6= 0 correspond to finite

points in R2. If we add points with x3 = 0 to R2, the resulting space is the set

of all homogeneous 3-vectors, namely the projective space P 2. The points with

the last coordinate x3 = 0 are known as ideal points , or points at infinity. The

set of all ideal points lies on a single line, the line at infinity, l∞ = [0, 0, 1]⊤.

This can be verified by [0, 0, 1][x1, x2, 0]
⊤ = 0.

A model of the projective plane P 2 may be thought of a set of rays in R3 through

the origin. Points and lines may be obtained by intersecting this set of rays by

the plane x3 = 1 (see Figure 2.1). As shown in the Figure 2.1, point x is

l

x
3

x1

x2

O

ideal
point

l1

l2

l3

R3

p
1p
2

x

plane x =1
3

Figure 2.1: A model of projective plane.

obtained by intersection of the line l3 with the plane x3 = 1 and line l passes

through points p1 and p2 which are obtained by intersection of lines l1 and l2

with the plane x3 = 1. The rays representing ideal points and the plane repre-
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senting l∞ are parallel to the plane x3 = 1.

2.1.3 Duality Principle

Formally, there is no difference between points and lines in P 2, therefore any

theorem or statement can be rewritten by interchanging the roles of points and

lines, which is called duality principle [3].

2.1.4 Conics

A conic is a curve described by a second-degree equation in the plane. In Eu-

clidean geometry conics are of three main types: hyperbola, ellipse and parabola.

The equation of a conic in inhomogeneous coordinates is

ax2 + bxy + cy2 + dx+ ey + f = 0

In homogeneous coordinates by replacing x 7−→ x1/x3, y 7−→ x2/x3 gives

ax2
1 + bx1x2 + cx2

2 + dx1x3 + ex2x3 + fx2
3 = 0

or in the matrix form

x⊤Cx = 0

where the conic coefficient matrix C is given by

C =















a b/2 d/2

b/2 c e/2

d/2 e/2 f















(2.1)

2.1.5 Projectivity

A projectivity such as the one shown in Figure 2.2 is an invertible mapping H

from P2 to itself such that three points x1, x2 and x3 lie on the same line if and

only if after the mapping H, x
′

1 = H(x1), x
′

2 = H(x2) and x
′

3 = H(x3) also lie on

5



the same line.

A projectivity is also called a collineation, a projective transformation or a ho-

mography : these are all synonymous terms.

O

x

y'
y x'

H

x
1

x
1

'x
1

x
2

'x
2

x
3 'x

3

Figure 2.2: Projectivity H maps the points x1, x2 and x3 to the points x
′

1, x
′

2

and x
′

3.

2.2 Projective Geometry of 3-space

In the former section, projective plane, P2 and its basic concepts are described.

These concepts have analogies in projective space, P3. For example, the duality

between points and lines in P2 is between points and planes in P3.

In 3-space, homogeneous representation of point X=[x1,x2,x3,x4]
⊤ with x4 6= 0

is

[x1/x4, x2/x4, x3/x4, 1]
⊤

which is [x1/x4, x2/x4, x3/x4]
⊤ in R3. Ideal points are points at infinity with

x4 = 0. Ideal points lie on a plane at infinity, π∞ which is the analogy of line at

infinity, l∞ in P2. [2].
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2.2.1 Projectivity (Projective Transformation)

The group of invertible n × n matrices with real elements is the general lin-

ear group of n dimensions is GL(n). To obtain the projective linear group, the

matrices related by a scalar multiplier are identified, giving PL(n) (this is a

quotient group of GL(n))[2]. PL(3), Projective transformations of the plane is

considered.

Projectivity of 3-space which is an invertible 4x4 matrix that maps points in P 3

to points in P 3 forms projective linear transformations namely projective, affine,

similarity and euclidean. Every latter is the subgroup of the former. Therefore

projective transformation is the most general one whereas euclidean transforma-

tion is the most specialized one (see Figure 2.3). Note that transformation and

group will be used as synonyms.

Projective Transformation

Affine Transformation

Metric Transformation

Euclidean 
Transformation

Figure 2.3: Transformations and subgroups.

2.2.2 Euclidean Transformation

Euclidean transformation, which is known as displacement is composed of a

translation and rotation. It can be written as

x
′

= HEx =







R t

0T 1





 x

7



where R is 3x3 rotation matrix, t is a translation vector, 0 = [0, 0, 0]T is a null

3-vector. Euclidean transformation has 6 dof (degrees of freedom)1, three for

rotation and three for translation. Length (the distance between two points),

area, volume and angle (the angle between two lines) are invariants2 for Eu-

clidean transformation [2].

2.2.3 Metric (Similarity) Transformation

Metric transformation (simply similarity) is an euclidean transformation com-

posed with an uniform scaling. It can be written as

x
′

= HSx =







sR t

0T 1





 x

where the scalar s represents the uniform scaling. It preserves the “shape”.

Similarity transformation has 7 dof, one more dof than that of Euclidean trans-

formation. Since angle between two lines doesn’t change by rotation, translation

and uniform scaling, in metric transformation, angle is invariant. In addition,

ratio of lengths, ratio of areas and ratio of volumes are invariants for similarity

transformation.

2.2.4 Affine Transformation

Affine transformation has the following block form

x
′

= HAx =







A t

0T 1






x

where A is the composition of rotations and non-uniform scalings. Affine trans-

formation has 12 dof, nine for matrix A and three for translation t. Since affine

transformation includes non-uniform scalings, ratio of lengths and angle between

lines can not be preserved by affine transformation.

1Among the n elements of any matrix, number of independent ratios gives the degrees of

freedom (dof).

2Properties that do not change when the specified transformation is applied.
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Table 2.1: Transformations of groups.

euclidean similarity affine projective
rotation

√ √ √ √

translation
√ √ √ √

uniform scaling
√ √ √

nonuniform scaling
√ √

shear
√ √

perspective projections
√

composition of projections
√

Parallel lines are the lines which intersect at a point at infinity. After affine

transformation, parallel lines intersect at another point at infinity so they are

parallel after affinity. Parallel lines, length ratios of parallel lines and ratio of

areas are invariants for affinity.

2.2.5 Projective Transformation

Projective transformation is the most generalized one and has the following block

form

x
′

= HPx =







A t

vT υ





 x

where v is a general 3-vector. The 15 dof of a projective transformation are

accounted for as seven for a similarity (three for rotation, three for translation,

one for scaling), five for affine scalings, and three for the projective part of the

transformation. Incidence, ratio of ratios (cross ratio) of lengths on a line are

the fundamental invariants of projective transformation.

Allowed transformations in each group are shown in Table 2.1. As it can be

seen from Table 2.2, after each transformation some knowledge of the original

scene is lost. In other words, each transformation causes its own distortion. This

is shown in Figure 2.4. Transformations are applied to a cube and after each

transformation the cube is shown. Projective transformation loses the most

of knowledge related with the original scene, whereas euclidean transformation

9



Table 2.2: Invariants of groups.

euclidean similarity affine projective
length

√

angle
√ √

ratio of lengths
√ √

parallelism
√ √ √

incidence
√ √ √ √

collinearity
√ √ √ √

tangency
√ √ √ √

cross ratio
√ √ √ √

keeps the most of it. It has been the aim of the researchers to get as much as

knowledge as they can.

2.3 The Projective Geometry of n-space

This section is the generalization of the projective geometry and it is only a

small introduction. A point in projective n-space, P n, is given by a vector of

(n+1) coordinates x=[x1 ... xn+1]
⊤. All of these coordinates shouldn’t be zero at

the same time. If this is the case, they are called homogeneous coordinates. A

line is also represented by a vector.

Two points represented by (n+1)-vectors x and y are equal if and only if

there exists a nonzero scalar λ such that xi = λyi, for every i (1 ≤ i ≤ n + 1).

This will be indicated by x ∼ y [1].

10



Projective

TP

Metric

TM

Euclidean

TE

Affine

TA

Figure 2.4: Transformations of geometries.
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CHAPTER 3

Camera Models and Epipolar Geometry

In this chapter, first the process of image formation is described. After the

geometry of image formation, the camera models and their parameters are given.

3.1 Image Formation

Light rays reflected from the object point enters the camera through the camera’s

aperture and hits the image plane. In this way, object point converges to an

image point. If the camera’s aperture is not small enough as in Figure 3.1, all

Image Plane
Aperture

Optical
System

Optical Axis

Figure 3.1: A model of pinhole.

light rays coming from the same object point may not hit the image plane at

the same point. And this will cause distorted images. To prevent this, camera’s

aperture is reduced to a point, which is called a pinhole [5]. Furthermore it is

assumed that a thin lens in the optical system will focus all the rays from the

12



object point to the same image point. This is the basic of perspective or pinhole

camera.

3.2 Geometric Image Formation

Basic properties of thin lenses help us to understand the geometric aspects of

image formation. Basic properties of a thin lens are as follows:

• Any ray entering the lens parallel to the axis on one side goes to through

the focus on the other side.

• Any ray entering the lens from the focus on one side emerges parallel to

the axis on the other side.

M

m

F
r

F
l

Z zf f

OS

s

R

Q

Figure 3.2: Image formation of a thin lens. Fl and Fr are the focuses of the lens,
whereas f is the focal length.

As it is shown in Figure 3.2, the point M = [X, Y, Z]⊤ in world frame is

mapped to the point m = [x, y]⊤ in camera frame. From the similar triangles

< MSFl > and < ROFl > we obtain the equation below:

x = f
X

Z
y = f

Y

Z
(3.1)
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3.2.1 Pinhole Camera Model

A basic pinhole camera is shown in Figure 3.3. Line from the camera center,

O, perpendicular to the image plane is called the principal axis, and the point

where the principal axis meets the image plane is called the principal point.

Image plane is at Z = f . Therefore, the third component of image point m is

always equal to the focal length. Hence m = [x, y, f ]⊤ can be used instead of

m = [x, y]⊤.

M
X

Y

Z

x

y

O

m

image 
plane

principal
axis

f

ocamera
center

principal
point

Figure 3.3: Pinhole camera model.

3.3 Camera Parameters

Using a camera, a world point M is mapped to the image pixel m. During

this mapping process, two transformations are performed between coordinate

systems. The first transformation is from world coordinate system to camera

coordinate system. Camera coordinate system can be located with respect to

a known world coordinate system. Then the transformation from world frame

( ~Xw, ~Yw, ~Zw) to camera frame ( ~Xc,~Yc, ~Zc) can be specified by the translation vec-

tor T and the 3 × 3 rotation matrix R as shown in Figure 3.4. T and R forms

the extrinsic parameters of the camera. The second transformation is from the

camera coordinate system to the image coordinate system. Equation 3.1 that

is obtained from triangle similarity can be written in linear projection equation

using the homogeneous representation of points.
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Figure 3.4: Transformation from world frame to camera frame.
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(3.2)

This is the simplest case. As it is shown in Figure 3.5, the origin of the image

plane ( ~uo,~vo) may not be at the principal point (~xc,~yc) in practice. Therefore,

o

u
o

v
o

x
c

y
c

Figure 3.5: Transformation from camera frame to image frame.

in general the mapping is

[X, Y, Z]⊤ 7→ [fX/Z+uo, fX/Z+vo]
⊤
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and can be written in matrix multiplication form by















fX + Zuo

fY + Zvo

Z
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


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



=















f 0 uo 0

0 f vo 0

0 0 1 0


























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
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Y

Z

1
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

















(3.3)

Assume that matrix A transforms the camera frame to image frame, which is

given as follows

A =















f 0 uo

0 f vo

0 0 1















(3.4)

In the pinhole camera model, we assume that image plane is composed of

square pixels. However in CCD (Charge Coupled Device) camera model there

is the possibility of having non-square pixels. If the number of pixels per unit

distance in image coordinates is mx and my in the x and y directions then

αx = fmx and αy = fmy where αx and αy are scale factors, that represent

the focal length in pixel dimensions in x and y direction respectively. Similarly,

principal point in pixel dimensions is uo = mxpx and vo = mypy. Therefore, the

general form of calibration matrix of a CCD camera is

A =















αx 0 uo

0 αy vo

0 0 1















(3.5)

In general, we can consider one more parameter s. It is the skew parameter

which is zero for most of the cases. If s 6= 0, then it means that x and y axes

are not perpendicular and it may arise when the image is being imaged again.

In this case,

A =















αx s uo

0 αy vo

0 0 1















(3.6)
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All of these, αx, αy, s, uo, vo, are the intrinsic parameters of the camera.

The problem of estimating intrinsic and extrinsic parameters is called camera

calibration.

Finally perspective projection matrix, P can be introduced, P maps the

world point M to image pixel m.

s















x

y

1















= P





















X

Y

Z

1





















(3.7)

where s is a scale factor and P is the 3× 4 perspective projective matrix, which

can be decomposed as

P = A
[

R T

]

(3.8)

where A is the 3 × 3 matrix that stands for intrinsic camera parameters and

transforms the camera frame to image frame.
[

R T

]

stands for external

camera parameters and transforms the world frame to camera frame.

3.4 Epipolar Geometry

Several relationships exist between two, three or more images that are acquired

simultaneously or sequentially of a scene. Relationship of two images is defined

by epipolar geometry, which is very important for reconstruction from images.

3.4.1 Epipolar Geometry

Two images of a scene are related by the epipolar geometry. As shown in Fig-

ure 3.6, consider two cameras with the camera centers c1 and c2, respectively.

M is the scene point in world coordinate system and its projections on the im-

age planes are m and m
′

, respectively. Hence, m and m
′

are the corresponding

points. Given the point m in the first image, its corresponding point m
′

in the

second image is restricted to line on the line, lm, which is called the epipolar line
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c 1 c 2

e e '
lm' lm

Figure 3.6: Epipolar Geometry.

of m and vice versa.

m
′T lm = 0

since m
′TFm = 0

therefore lm = Fm

(3.9)

It can be seen that lm is obtained from the intersection of the second image

plane with the plane that passes through M (scene point), c1 (first camera

center) and c2 (second camera center). Plane that is defined from M , c1 and c2

is called epipolar plane. In the same way, epipolar line of m
′

, lm′ is obtained

from the intersection of the first image plane with the epipolar plane. All of the

epipolar lines in each image, intersect at a point, which is called epipole (see

Figure 3.7) and each epipole is the projection of camera center in the opposite

image.

3.4.2 Fundamental Matrix

Epipolar geometry is represented by a 3×3 matrix called fundamental matrix F.

Let’s assume that the displacement from the first camera to the second camera

is (R, t), where R is a 3× 3 rotation matrix and t is a 3× 1 translation matrix.

Suppose that the world coordinate system is set to the first camera coordinate

system. Hence, the scene point M can be expressed in the first camera frame.

Then the projection equations of the scene point M to the corresponding points

18
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Figure 3.7: Epipolar lines intersect at epipoles e and e
′

.

m and m
′

can be written as

s1m = A1

[

I 0

]







M

1







s2m
′

= A2

[

R t

]







M

1







(3.10)

where A1 and A2 are the intrinsic parameters of the first and second camera,

respectively and s1 and s2 are the nonzero scalars. After eliminating M , s1 and

s2, Equation 3.10 can be written as

m
′TA−T

2 t× RA−1
1 m = 0 (3.11)

where × denotes the cross product of two 3-vectors. Equation 3.11 gives very

important constraints between the two images of the same scene. If we denote

F = A−T
2 t× RA−1

1 , then F is called the fundamental matrix. Then, given a set

of correspondences m ↔ m
′

in two images, the fundamental matrix F satisfies

m
′
⊤Fm = 0 (3.12)

for all m ↔ m
′

. It gives the all relation between two uncalibrated images and

this is the only information that can be obtained.
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3.4.3 Computing the Fundamental Matrix

Each point correspondence generates one linear equation in the entries of F.

Specifically, for a pair of matching points m=[x, y, 1]T and m
′

=[x
′

, y
′

, 1]T , the

equation 3.12 becomes,

x
′

xf11 + x
′

yf12 + x
′

f13 + y
′

xf21 + y
′

yf22 + y
′

f23 + xf31 + yf32 + f33 = 0 (3.13)

which is inner product of

(x
′

x, x
′

y, x
′

, y
′

x, y
′

y, y
′

, x, y, 1)F = 0

for n pair matches m ↔ m
′
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


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nyn y
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





F = 0 (3.14)

which can be written as

AF = 0 (3.15)

F can be solved up to scale by solving these linear set of equations.

Smallest singular value of A gives F, which is the last column of V, where

SV D(A) = UDV T . The matrix F found may not be singular, may have rank

3, then F is replaced with F
′

, the closest singular matrix to F with rank 2.

Fundamental matrix is a singular matrix with rank 2 (see Appendix C), this is

called singular constraint.

There are several methods for estimating fundamental matrix F [11, 14, 10, 16].

8-point algorithm given in Algorithm 1, is the simplest method for computing

the fundamental matrix.

Algorithm 1 8-point algorithm.

Given at least 8 corresponding points mi ↔ m
′

i

Form the matrix A as defined in Equation 3.14

Determine the F from the singular vector corresponding to the smallest

singular value of A.

Replace the F with F
′

such that det(F
′

) = 0
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If the input data is normalized, this algorithm performs better, which is

called normalized 8-point algorithm that is given in algorithm 2.

Algorithm 2 Normalized 8-point algorithm.

Given at least 8 corresponding points mi ↔ m
′

i

Normalize the corresponding points m̂i = Tmi and m̂i

′

= T
′

m
′

i such that

their centroid is at the origin and their RMS (root mean square) is
√
2

Form the matrix A as defined in Equation 3.14

Determine the F from the singular vector corresponding to the smallest

singular value of A.

Replace the F with F
′

such that det(F
′

) = 0

Denormalize the F
′

by F̂
′

= T
′TF

′

T , where F̂
′

is the fundamental matrix of

the original data mi ↔ m
′

i.

There are other linear and nonlinear methods for computing F. However they

are not mentioned in this thesis.

3.4.4 Computation of the camera matrices

Camera geometry is obtained from fundamental matrix F, which is very im-

portant for reconstruction. Given the corresponding points mi ↔ m
′

i, camera

matrices P and P
′

corresponding to a fundamental matrix F may be chosen as

P1 =
[

I 0

]

P2 =
[

[e
′

]xF e
′

] (3.16)

where left and right null spaces of F gives the epipoles in each image. Note that

[e
′

]x is the skew-symmetric matrix (see Appendix D).

3.5 Scene Geometry

Given the image sequences of a scene, obtaining the 3D information from them is

called structure from motion problem. Given the corresponding points m ↔ m
′

and camera matrices P and P
′

, computing the 3D position of the scene point
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from its projections on images is simply achieved by triangulation. In this way

the scene is reconstructed, since these computations are carried with a projective

ambiguity, this is called projective reconstruction.

3.5.1 Projective Ambiguity

If the cameras are uncalibrated, namely if the intrinsic and extrinsic parameters

of each camera are unknown, nor their location with respect to each other, then

reconstruction is possible up to a projective reconstruction.

3.5.2 Triangulation

Triangulation is simply the process of intersecting the backprojected lines from

m and m
′

. Given two camera matrices P and P
′

, let m and m
′

be two points in

the two images that satisfy the epipolar constraint, m
′TFm = 0.

In particular it means that m
′

lies on the epipolar line Fm. This means that

two rays back-projected from image points m and m
′

lie in a common epipolar

plane which is the plane passing through the two camera centers. Since two rays

lie in a plane, they will intersect at some point.

Numerically stable method of actually determining the point M at the inter-

section of the two rays back-projected from m and m
′

is described in the next

section.

The only points in 3-space that cannot be determined from their images are

points on the baseline between two images. Baseline is the line connecting the

two camera centers. In this case, the back-projected rays are collinear (both

being equal to the baseline) and intersect along their whole length. Thus, the

point M cannot be uniquely determined.

3.5.3 Linear Triangulation Methods

In each image, following equations are valid, m = PM and m
′

= P
′

M , where

m ↔ m
′

are corresponding points, P and P
′

are the projective matrices and M

is the scene point in 3D.

These equations are transformed into a form AM = 0, which is an linear
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equation in M. For the first image x× (PM) = 0, which can be written as

x(p3TM)− (p1TM) = 0

y(p3TM)− (p2TM) = 0

x(p2TM)− y(p1TM) = 0

(3.17)

where piT is the ith row of the projection matrix, P . An equation of the form

AM = 0 can be composed, with

A =





















xp3T − p1T

yp3T − p2T

x
′

p
′3T − p

′1T

y
′

p
′3T − p

′2T





















(3.18)

where two equations are included from each image, giving a total of four equa-

tions in four homogeneous unknowns. This is a redundant set of equations, since

the solution is determined only up to a scale.

Solution is found by homogeneous method. M is assigned to the smallest

singular value of A. For more information [2] can be referred.
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CHAPTER 4

Relative Consistency of Projective

Reconstructions

This chapter presents two measures for relative verification of projective recon-

structions obtained from the same image pair. These methods are based on

the ratio between the x, y and z coordinates of two 3D projective reconstruc-

tions of the same point correspondences. It is known that this ratio is similar

for the same point correspondences. This information is used to measure the

consistency of projective reconstructions obtained from the same image pair.

4.1 Image acquisition environment

In an ordinary room, two images of an object or a scene are captured with a

2/3” Color Progressive scan CCD camera at a resolution of 1300x1030. These

two images are sequential images with a slight difference between them (see

Figure 4.1 and Figure 4.2 courtesy of INRIA (France)).

4.2 Projective Reconstruction

When an image is taken by a camera, scene points are projectively transformed

onto the image plane. It is assumed that camera calibration is unknown; camera

is undergoing an unknown motion around the object or the scene. The steps

in the projective reconstruction is shown in Figure 4.3. Given an image pair,
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Figure 4.1: An image pair of a rubic cube.

Figure 4.2: An image pair of a scene.

interest points are computed by Canny edge detector [9] and then these interest

points are matched. Given the corresponding points, fundamental matrix F is

estimated, which is called weak calibration. From F , camera matrices P1 and P2

are computed, therefore camera geometry is obtained. Using camera geometry,

projective reconstruction is achieved [11, 12, 13]. In other words, scene geometry

is projectively defined. In the following sections, these steps are explained in

detail.

4.2.1 Matching

Given an image pair, the aim is to match the corresponding points. First, points

of interest in each image are extracted by Canny edge detector. Edge detector is

preferred rather than corner detector because of the reasons mentioned in [12].

Taking one of the image as base image, corresponding point of each interest point

in the base image is searched in the other image. For every interest point in the

base image, a search window is defined in the other image centered at the pixel

values of this interest point, as illustrated in Figure 4.4. A correlation window
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Triangulation
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Figure 4.3: Steps in projective reconstruction. Repetition of steps after matching
gives projectively equivalent reconstructions.

of size (2n+ 1)× (2m+ 1) is defined over the pixels in this search window. For

every correlation window, normalized cross correlation of the intensity values of

the local neighborhood is evaluated. Correlation score of points m1 and m2 is

defined as:

C(m1, m2) =

∑n

i=−n

∑m

j=−m[I1(u1+i,v1+j)−I1(u1,v1)]×[I2(u2+i,v2+j)−I2(u2,v2)]
(2n+1)(2m+1)

√
σ2(I1)×σ2(I2)

(4.1)

where Ik(u, v) =
∑n

i=−n

∑m
j=−m Ik(u+ i, v + j)/[(2n+ 1)(2m+ 1)] is the average

intensity value of the correlation window centered at (u, v) and σ(Ik) is the

standard deviation of the image Ik in the neighborhood (2n+ 1)× (2m+ 1) of

(u, v), which is given by:

σ(Ik) =

√

√

√

√

∑n
i=−n

∑m
j=−m(Ik(u, v)− Ik(u, v))2

(2n+ 1)(2m+ 1)
(4.2)

Correlation window with the highest correlation score is taken as candidate. If

this score is greater than a threshold value, these pixels are accepted as corre-

sponding points. To achieve one-to-one matching, the pixels matched previously

are not considered in the subsequent matching process.
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Figure 4.4: Correlation window centered at (u1, v1) in the first image and search
window centered at (u1, v1) in the second image.

After the corresponding points are obtained, for each corresponding points pair,

difference between their x coordinate, disparityx and difference between their y

coordinate, disparityy are computed. Among these values, frequencies of each

disparityx and disparityy are evaluated. The disparityx value with the highest

frequency is selected as the most voted disparityx, tmvdisparityx and in the

same manner tmvdisparityy is selected. The corresponding points pairs that

have disparityx and disparityy in a defined closure of these tmvdisparityx and

tmvdisparityy are kept, the rest are eliminated.

Furthermore, mutually matching is tested by changing the roles of the images.

For example, as shown in Figure 4.5 (a) (ui, vi) in the first image is matched to

a point (uj, vj) in the second image, when the second image is the base image,

(uj, vj) in the second image should also match to the point (ui, vi) in the first im-

age. Therefore (ui, vi) ↔ (uj, vj) can be accepted as corresponding points, since

they are mutually matching each other. In Figure 4.5(b), (ui, vi) is matched to

(uj, vj), however (uj, vj) is matched to (uk, vk). Therefore (ui, vi) ↔ (uj, vj) is

discarded, not accepted as corresponding points.

4.2.2 Computing the epipolar geometry

Epipolar geometry is estimated by the Algorithm 3 given below. Given the

corresponding points m ↔ m
′

, fundamental matrix F is computed by using the
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Figure 4.5: Finding the corresponding points. (a), (ui, vi) ↔ (uj, vj) are ac-
cepted as corresponding points. (b) (ui, vi) ↔ (uj, vj) are not accepted as cor-
responding points.

Algorithm 2. As mentioned before, each corresponding point must satisfy the

epipolar constraint:

m
′TFm = 0 (4.3)

Corresponding points satisfying this constraint is called an inlier, otherwise it is

called an outlier. Number of corresponding points satisfying epipolar constraint

is evaluated. Fundamental matrix, F that gives the smallest number of outliers is

chosen as the fundamental matrix of the given image pair. Outliers are discarded

and only inliers are carried to the next step. This is continued till the number

of outliers is less than a threshold.
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Algorithm 3 Estimation of epipolar geometry.

do

for n times do

compute F

evaluate the number of outliers

select the F with the smallest number of outliers

discard the outliers

while (number of outliers < N)

4.2.3 Camera geometry and triangulation

After the epipolar geometry is obtained, camera matrices are computed by using

the method given in Section 3.4.4. Scene geometry is estimated by the linear

triangulation method described in Section 3.5.3. Therefore 3D data set is ob-

tained and projective reconstruction is achieved. Figure 4.6 gives the projective

reconstruction obtained from the image pair of the rubic cube in Figure 4.1.

Figure 4.6: Projective reconstruction of the rubic cube.

As illustrated in Figure 4.3, if we repeat the steps of projective reconstruction
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after matching, a new 3D data set is obtained from the same image pair.

4.3 Verification Measures

Two verification measures are introduced. But before that the main idea of

these measures are given.

4.3.1 Theory behind the measures

For a reconstruction of a scene, when only a set of corresponding points are

available, the obtained 3D points and camera matrices are true only up to a

projective transform. This means; a group of projective reconstructions may be

obtained from an image pair using corresponding points, which are related to

each other by 4× 4 transform matrices H . In other words any two such recon-

structions are projectively equivalent.

Assuming that P1 and P2 are the camera matrices corresponding to the first

reconstruction and P
′

1 and P
′

2 are the camera matrices of the second reconstruc-

tion, P1 = P
′

1H
−1 and P2 = P

′

2H
−1. Also suppose that Mi and M

′

i are the 3D

reconstructed points from the same corresponding points using the first camera

matrices and second camera matrices, respectively, where Mi = HM
′

i . From the

above relations we have:

xi = P1Mi = P
′

1H
−1HM

′

i = P
′

1M
′

i (4.4)

After the matching step is over, if the following steps are repeated (see Fig-

ure 4.3)

• compute F , P1 and P2.

• by triangulation obtain 3D data set.

different scene geometry are obtained, which are projectively equivalent.

Let’s assume that M = [x1, x2, x3, x4]
T and M

′

= [x
′

1, x
′

2, x
′

3, x
′

4]
T are the two 3D

reconstructed points from the same corresponding points, m ↔ m
′

as shown in
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Figure 4.7: M and M
′

are the 3D reconstructed point of the same corresponding
points, m ↔ m

′

.

Figure 4.7. C2 and C
′

2 are two different camera coordinate system of the sec-

ond image for two different projective reconstructions obtained from the same

corresponding points. Since world coordinate system is set to the first camera

coordinate system, C1 and C
′

1 are same. P1, P2 are the camera matrices of the

first projective reconstruction and P
′

1, P
′

2 are the camera matrices of the second

projective reconstruction. Therefore, the following equations are valid:

s1m = P1M

s2m
′

= P2M

s
′

1m = P
′

1M
′

s
′

2m
′

= P
′

2M
′

(4.5)

where s1, s2, s
′

1, s
′

2 are nonzero scale factors. From Equation 4.5,

P1M =
s1
s
′

1

P
′

1M
′

(4.6)

Since P1 = P
′

1 = [I|0], this implies that

[x1 x2 x3]
T = k[x

′

1 x
′

2 x
′

3]
T (4.7)
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where M = [x1 x2 x3 1]T , M
′

= [x
′

1 x
′

2 x
′

3 1]T and k = s1
s
′

1

is a nonzero scalar.

This means that both M and M
′

lie on the same ray from the first camera cen-

ter. Based on this fact, the ratio between the x, y and z coordinates of M and

M
′

which are 3D reconstructed points of the same corresponding points should

be equal. This is the basic idea behind the measures for evaluating the relative

consistency of projective reconstructions.

4.3.2 Measure 1: Mean and Standard Deviation

It has been found out that for a given corresponding points, there is a rela-

tion between its two 3D reconstructions. If M1 = [x1, y1, z1, 1]
T and M

′

1 =

C X

cY

c

Zc

M1

M1
'

M

M
2

2
'

Rigid Object

Figure 4.8: M1 and M
′

1 are the two 3D reconstructed points of the same object
point triangulated from the m1 ↔ m

′

1. In the same manner, M2 and M
′

2 that
are triangulated from m2 ↔ m

′

2.

[x
′

1, y
′

1, z
′

1, 1]
T are the two 3D reconstructions of the same object point, and in

the same manner, if M2 = [x2, y2, z2, 1]
T and M

′

2 = [x
′

2, y
′

2, z
′

2, 1]
T are the two 3D

reconstructions of another object point (see Figure 4.8), then the ratios between

the x,y and z coordinates of the 3D reconstructions of the same object point are
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equal.

x1

x
′

1

= y1

y
′

1

= z1
z
′

1

= k1

x2

x
′

2

= y2

y
′

2

= z2
z
′

2

= k2
...

xn

x
′

n

= yn
y
′

n

= zn
z
′

n

= kn

(4.8)

which can be expressed as

rx1 = ry1 = rz1 = k1

rx2 = ry2 = rz2 = k2
...

rxn = ryn = rzn = kn

(4.9)

These ratios, rx1, ry1,..., rz1 in theory should be equal but in practice they

are very close to each other. Therefore the absolute values of their differences

are expected to be zero. For every common object point, in two projective

reconstructions, average ratio of these three ratios is evaluated. Let’s call it

avgr.

avgr1 = (rx1 + ry1 + rz1)/3

avgr2 = (rx2 + ry2 + rz2)/3
...

avgrn = (rxn + ryn + rzn)/3

(4.10)

The difference between avgr and any of these three ratios is expected to be zero.

However due to error in measurements, it might not be the case always. avgr

is subtracted from each ratio. Absolute value of these three subtractions are

added up and its average is computed. Let’s call this value avgdiff .

avgdiff1 = (|rx1 − avgr1|+ |ry1 − avgr1|+ |rz1 − avgr1|)/3
avgdiff2 = (|rx2 − avgr2|+ |ry2 − avgr2|+ |rz2 − avgr2|)/3

...

avgdiffn = (|rxn − avgrn|+ |ryn − avgrn|+ |rzn − avgrn|)/3

(4.11)

Then, mean and standard deviation of avgdiff is computed and used in verifi-

cation of projective reconstructions. For relatively consistent projective recon-

structions they are expected to be zero.
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4.3.3 Measure 2: Differences of Ratios

In the second measure, the equality of ratios is used. The difference between the

ratios must be zero. In this way, the differences between these ratios are looked

at, the ones having the difference less than a threshold are named as goodpoints.

|rx1 − ry1| < Threshold

|rx1 − rz1| < Threshold

|ry1 − rz1| < Threshold

(4.12)

The ratio of the goodpoints to the common points has been used as a measure

to verify the projective reconstructions relatively. Common points are the scene

points that are present in both of the projective reconstructions.

ratio =
goodpoints

commonpoints
(4.13)

4.4 Experimental Results

Experimental results of the image pair shown in Figure 4.1 and Figure 4.2 are

considered separately. The first measure shows the consistency of two projective

reconstructions by analyzing the mean and the standard deviation of avgdiff .

If they are consistent, then the mean and the standard deviation of avgdiff

is expected to be close to zero. The second measure shows the consistency of

two projective reconstructions by the use of ratio, which is the number of good

points to the number of common points in both reconstructions. For consistent

projective reconstructions, this value is expected to be 1 or close to 1.

4.4.1 Experimental Results for The Rubic Cube Image Pair

512 × 512 images are used. In the first image of the rubic cube, 3606 interest

points and in the second image of the sequence, 3657 interest points are detected

by Canny edge detector. During the matching step, by using normalized-cross-

correlation score the number of corresponding points is 3594. This number

is reduced to 2470 by disparity check. After the mutually constraint, 2024

corresponding points are remained valid. Epipolar geometry is estimated by

randomly chosen corresponding points among these 2024 corresponding points
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as described in Algorithm 3. Some of the corresponding points, which are not

satisfying the the epipolar constraint

m
′TFm = 0 (4.14)

are discarded. In fact, because of the errors in measurement and computations

till this step, epipolar constraint is not expected to be zero as in Equation 4.14.

In other words, given the corresponding points m ↔ m
′

, point m
′

may not be

on the epipolar line lm, where lm = Fm. It can be allowed number of pixels

far away from the epipolar line. That’s why epipolar constraint is replaced as

follows:

distance(m
′T , Fm) < τ (4.15)

where the corresponding points m ↔ m
′

are accepted as inliers, if the distance

between point m
′

and the epipolar line lm = Fm is less than τ pixels. There-

fore the number of corresponding points is reduced differently each time this

step is repeated. Using linear triangulation method in Section 3.5.3, projective

reconstruction is accomplished, 3D data set is obtained. Repetitions of steps

after matching gives different 3D data sets that are projectively equivalent.

Each experiment analyzes the relative consistency two projective reconstruc-

tions. Measure 1 and Measure 2 are carried on the 3D points of each projective

reconstructions obtained from the common corresponding points.

As shown in Table 4.1, the first projective reconstruction is obtained with

the stated τ1 value and the second projective reconstruction is obtained with

the stated τ2 value. For Measure 1, mean and standard deviation of avgdiff

and for Measure 2, ratio are shown. Depending on these experiments, pro-

jective reconstructions in the 5th experiment with the τ1 = 0.9 and τ2 = 0.9

values, is found to have the lowest mean, a very low standard deviation and

the ratio = 1. Therefore among all, these two projective reconstructions are

the most relatively consisted ones. Projective reconstructions in the 6th experi-

ment with the τ1 = 1.3 and τ2 = 1.3 values, is found to have the highest mean

with a high standard deviation as compared to others and the ratio = 0.34841.

Therefore among these experiments, these two projective reconstructions are

the least relatively consisted ones. However, projective reconstructions in the
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Table 4.1: Relative consistency of projective reconstructions obtained from an
image pair of a rubic cube in Figure 4.1 with respect to various τ1 and τ2 values.

Exp.Num. τ1 τ2 Mean (10−7) Standard Deviation (10−7) Ratio
1 0.5 0.5 6.6 8 1
2 0.5 0.5 258.7 414.5 0.92648
3 0.7 0.7 6.3 5.4 1
4 0.7 0.7 9.5 10 1
5 0.9 0.9 5.9 15.7 1
6 1.3 1.3 54650 302990 0.34841
7 1.3 1.3 9.5 30.7 1
8 1.5 1.5 6.5 7.7 1
9 1.5 1.5 13.7 119.9 0.99505
10 1.7 1.7 6.7 16.2 1
11 1.7 1.7 11.4 56.7 0.99801
12 2.0 2.0 26.1 51.3 1
13 2.0 2.0 11.7 29.1 1
14 2.5 2.5 757.2 12456 0.79088
15 2.5 2.5 8.3 30.4 1
16 3.0 3.0 199.6 258.2 0.98613
17 3.0 3.0 61.2 87.2 1
18 0.5 3.0 78 80.9 1
19 0.7 2.5 8.7 21 1
20 0.9 2.0 7.4 22.7 1
21 1.3 1.7 61.8 96.4 1
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7th experiment with the same τ1 = 1.3 and τ2 = 1.3 values as in the 6th ex-

periment is found to have a very low mean and standard deviation with the

ratio = 1. Therefore, τ1 and τ2 values that are used in generation of 3D data set

indirectly, do not help us to estimate the relative consistency of two projective

reconstructions. Measure 1 and Measure 2 only measure the relative consistency

of two given projective reconstructions. If the experiments are repeated with

the same τ1 and τ2 values, then different results are obtained. This is because

of the nature of projective matrices and fundamental matrix estimations. Using

different τ values in each projective reconstruction does not change the mean,

standard deviation and ratio values as expected. Since these τ1 and τ2 values

do not change the number of corresponding points for the image pair of ru-

bic cube. Measure 1 and Measure 2 are also verifies each other. When mean

and standard deviation is very low, ratio is equal to 1 and when mean and

standard deviation is not very low, ratio is less than 1. It can be seen from

the experiments that Measure 2 is less sensitive than Measure 1. Mean and

standard deviation varies frequently, whereas ratio is equal to 1 most of the

time.

4.4.2 Experimental Results for The Scene Image Pair

512× 256 images are used. In the first image of the scene, 4622 interest points

and in the second image of the sequence, 4570 interest points are detected

by Canny edge detector. Using normalized-cross-correlation score 4533 corre-

sponding points are found. This number is reduced to 2576 by disparity check.

After the mutually constraint, 2028 corresponding points are remained valid.

Depending on these experiments illustrated in Table 4.2, projective reconstruc-

tions in the 2nd experiment with the τ1 = 0.5 and τ2 = 0.5 values, is found to have

the lowest mean and standard deviation with the ratio = 1. Therefore among

all, these two projective reconstructions are the most relatively consisted ones.

Projective reconstructions in the 5th experiment with the τ1 = 0.9 and τ2 = 0.9

values, is found to have the highest mean and standard deviation with the

ratio = 0.02854. Therefore among these experiments, these two projective re-
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Table 4.2: Relative consistency of projective reconstructions obtained from an
image pair of a scene in Figure 4.2 with respect to various τ1 and τ2 values.

Exp.Num. τ1 τ2 Mean (10−7) StandardDeviation (10−6) Ratio
1 0.5 0.5 2836.9 1248.7 0.64190
2 0.5 0.5 70.3 4.39 1
3 0.7 0.7 998.9 67.36 0.60183
4 0.7 0.7 420.8 42.78 0.91531
5 0.9 0.9 102080 16344 0.02854
6 1.3 1.3 768 72.55 0.90375
7 1.3 1.3 976 111 0.68525
8 1.5 1.5 140.7 26.36 0.97287
9 1.5 1.5 528.7 76.97 0.89936
10 1.7 1.7 496.3 62.42 0.90774
11 1.7 1.7 71.4 5.4 1
12 2.0 2.0 2448 331.8 0.45064
13 2.0 2.0 298.1 45.29 0.91708
14 2.5 2.5 573 67.49 0.83909
15 2.5 2.5 375.6 65.07 0.89639
16 3.0 3.0 1658.8 218.99 0.57129
17 3.0 3.0 251.1 25.09 0.96201
18 0.5 3.0 1665.3 190.16 0.50822
19 0.7 2.5 188.1 21.56 0.99948
20 0.9 2.0 172.3 20.24 0.98421
21 1.3 1.7 4205.1 672.16 0.26492
22 0.9 0.9 87.5 12.03 1
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constructions are the least relatively consisted ones. However, projective recon-

structions in the 22nd experiment with the same τ1 = 0.9 and τ2 = 0.9 values as

in the 5th experiment is found to have a very low mean and standard deviation

with the ratio = 1. As stated in 4.4.1, if the experiments are repeated with

the same τ1 and τ2 values, then different results are obtained. This is because of

the nature of projective matrices and fundamental matrix estimations. Again,

using different τ values in each projective reconstruction does not change the

mean, standard deviation and ratio values as expected. Since these τ1 and

τ2 values do not change the number of corresponding points for the image pair

of scene. Measure 1 and Measure 2 are also consisted with each other. When

mean and standard deviation is very low, ratio is equal to 1 and when mean

and standard deviation is not very low, ratio is less than 1. Different than image

pair of rubic cube, image pair of scene gives highermean and standard deviation

and lower ratio values. Therefore, projective reconstructions obtained from im-

age pair of scene are less relatively consisted than the projective reconstructions

obtained from image pair of rubic cube. This shows the difference between the

used image pairs. Rubic cube was easier for macthing as compared to scene and

this is reflected in results.
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CHAPTER 5

Conclusion and Future Work

In this study, projective reconstruction from an image pair is obtained. For

the same image pair, projective reconstruction is repeated and two projec-

tive reconstructions obtained from the same image pair are checked whether

they are verifying each other. To accomplish this, two measures are presented

for measuring the relative For consisted projective reconstructions mean and

standard deviation are expected to be very close to zero and ratio is expected

to be 1. It can be said that these measures confirm each other when mean

and standard deviation is very low, ratio gets its maximum value, 1 and when

mean and standard deviation is not very low as compared to others, ratio is less

than its maximum value, 1. But as stated earlier, measure1 gives more reliable

analysis than measure2 since measure1 is more sensitive which involves standard

deviation and mean calculations. However, these measures don’t measure the

precision of projective reconstructions individually. They only measure the con-

sistency of two projective reconstructions with each other. If there is a projective

reconstruction, which is known to be a precise one, it can be used for testing the

candidate projective reconstructions and choose the most consistent one, which

can be assumed to be also precise. The ones having the highest consistency

can be chosen for further reconstructions. As seen in Table 4.1 and Table 4.2,

in general the mean and standard deviation of the experiments performed on

the rubic cube image pair are less than the mean and standard deviation of
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the experiments performed on the scene image pair. In other words, projective

reconstructions obtained from the rubic cube image pair seem more consisted

with each other than the projective reconstructions obtained from the scene im-

age pair. This may give us an idea of the projective reconstructions of different

image pairs. Since matching is a common source of errors, maybe this result

shows that there are less errors in matching of rubic cube image pair. In addi-

tion, since collinearity is preserved in projective reconstruction, given a group of

three or more points on the same line (for example points belonging to the edge

of an object with geometric shape like a cube) we can find the reconstructed

points using two different F matrices. These points should be:

• on the same ray from the camera center in both reconstructions,

• on the same line in each reconstruction.

Other projective transformation invariants such as incidence and cross ratio can

be also used. These are ideas for future work.
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APPENDIX A

Invariants of Projective Transformation

Projective geometry preserves some of the properties of the scene. These are as

follows:

Incidence: If a point p is lying on a line l, after projective transformation point

p lies on the line l. Collinearity : If there are n points that lie on a line, after

projective transformation those points lie on the same line. Tangency : If a line

l is tangent to a curve at a point p, after projective transformation, line l is

tangent to the curve at the point p. Cross Ratio: Let p1, p2, p3 and p4 be

collinear (on the same line) points as illustrated in Figure A.1. Crossratio is

p
1
p
2
p
3

p
4

l

Figure A.1: Cross ratio of points p1, p2, p3, p4 on the same line l.
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ratio of ratios.

CrossRatio(p1, p2; p3, p4) =
∆13

∆14

∆23

∆24

(A.1)

which is

CrossRatio(p1, p2; p3, p4) =
∆13∆24

∆14∆23
(A.2)

where ∆ij defines the distance between point i and point j.
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APPENDIX B

How the geometric structure can be upgraded?

When image sequence of a scene are taken, scene is projected to the images.

What we have at hand is the projective structure of the scene. However, using

enough number of images, geometric structure of the scene can be upgraded

from projective to metric, since metric structure is the highest structure that

can be retrieved from images [6].

For better understanding of these concepts ideal points, line at infinity, l∞,

plane at infinity, π∞ and absolute conic, Ω∞ must be described in detail.

Under a projective transformation ideal points may be mapped to finite points

and consequently l∞ is mapped to a finite line. However, if the transformation

is an affinity, then l∞ is not mapped to a finite line, but remains at infinity [2].

The line at infinity, l∞, is a fixed line under the affine transformation. Iden-

tification of l∞ allows the recovery of affine properties (parallelism, ratio of

areas) [2].

The plane at infinity π∞ is fixed under affine transformation. The plane π∞ is

a geometric representation of the 3 degrees of freedom required to specify affine

properties in a projective coordinate frame [2]. It has the canonical position
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π∞ = [0, 0, 0, 1]T

in affine 3-space and enables the identification of affine properties such as par-

allelism [2]. Two planes are parallel if and only if their line of intersection is on

π∞. A line is parallel to another line, or to a plane, if the point of intersection

is on π∞.

Once π∞ is identified in projective 3-space, it is then possible to determine the

affine properties such as whether geometric entities are parallel if they intersect

on π∞.

The conic at infinity Ω∞ a is fixed conic under any similarity transformation

[2]. The conic Ω∞ is a geometric representation of the 5 additional degrees of

freedom that are required to specify metric properties in an affine coordinate

frame. The absolute conic, Ω∞, is a (point) conic on π∞. In a metric frame

π∞ = [0, 0, 0, 1]T , and points on Ω∞ satisfy

X2
1 +X2

2 +X2
3 = 0

X4 = 0

This conic is composed of imaginary points on π∞.

Once Ω∞ (and its support plane π∞) have been identified in projective 3-space

then metric properties, such as angles and relative lengths, can be measured [2].
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APPENDIX C

Singularity Constraint

The n× n matrix A is non-singular (and thus has an inverse) if and only if the

homogeneous linear system AX = 0 has only the trivial solution X = 0.

Since 3×3 fundamental matrix F is expected to be a non-trivial solution there-

fore it must be a singular matrix with rank 2.
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APPENDIX D

Skew-symmetric Matrix and Cross Product

If a = [a1, a2, a3], then corresponding skew-symmetric matrix is defined as fol-

lows:

[a]
×
=















0 −a3 a2

a3 0 −a1

−a2 a1 0















(D.1)

Cross product of two 3-vectors a× b is defined as:

a× b = [a]x b (D.2)
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